Guided 2D Modeling of 3D Buildings using Oriented Photos

Lisa Kellner*

Supervised by: Michael Schwiirzler'

VRVis Research Center
Vienna / Austria

Figure 1: Modeling operations taking both oriented images and point cloud data into account. Left: Point Cloud-supported
Single Shot sketching, exploiting planar structures in the data. Middle: Multi-View Shot View sketching. Right: Texturing

the generated polygons using an interactive brushing method

Abstract

Capturing urban scenes using photogrammetric methods
has become an interesting alternative to laser scanning in
the past years. For the reconstruction of CAD-ready 3D
models, two main types of interactive approaches have be-
come prevalent: One uses the generated 3D point clouds
to reconstruct polygonal surfaces, while the other focuses
on 2D interaction in the photos to define edges and faces.

We propose a novel interactive system that combines
and enhances these approaches in order to optimize cur-
rent reconstruction and modeling workflows. Our main
interaction target are the photos, allowing simple 2D in-
teractions and edge-based snapping. We use the under-
lying segmented point cloud to define the 3D context in
which the sketched polygons are projected whenever pos-
sible. An intuitive Visual Guiding interface gives the user
feedback on the accuracy to expect with the current state of
modeling to keep the necessary interactions at a minimum
level.

Keywords: 3D-Modeling, Guidance, Photogrammetry

1 Introduction

The use of three-dimensional point cloud data of build-
ings gathered with different sensors is becoming part of the
standard workflow in surveying and mapping — may it be
from tachymetric devices, laser scans, or photogrammetry.
While solutions for acquisition, storage and viewing of the
generated point clouds have become commercially avail-

able, the derivation of low-polygonal, CAD-ready models
still poses a mostly unsolved challenge.

Only recently, researchers have started tackling this
problem by not only using meshing algorithms to triangu-
late the point cloud, but to detect and use underlying struc-
tures first in order to use geometric primitives to repre-
sent the building (see Section 2). By doing so, the emerg-
ing 3D models correlate a lot more to the way a human
artist would reconstruct a building in a 3D modeling tool:
Not only is the number of polygons usually considerably
lower, they also contain sharp edges and hierarchical def-
initions, and are therefore a lot easier to manipulate inter-
actively.

Still, reconstructing complete data sets is often hardly
possible due to limitations in the point data: Laser scan-
ners cannot be arbitrarily positioned, so that it is com-
mon that parts of the data are missing. Tachymetric point
clouds are too sparse for reconstruction, and photogram-
metric point clouds often have large holes caused by uni-
formly colored areas in them (see Section 3). This short-
coming in photogrammetric point clouds can be partly
compensated by considering the source photographs as
well, making it possible to identify and model sharp build-
ing edges using line features that can be identified in im-
ages more easily.

In this paper, we pursue the concept of using both point
cloud and photo data together, but combine it with the
approaches from Sinha et al. [18] or Arikan et al. [2]
of simplifying interactive 3D modeling to a 2D problem
whenever possible: We propose an interactive modeling
approach based on oriented photos, in which the user

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



sketches the desired geometry directly on the image using
simple 2D operations, supported by an edge-based snap-
ping feature. Based on the available data quality of the
underlying point cloud, the 2D polygon is either directly
projected to 3D space whenever possible, or the user is re-
quired to define the polygon geometry in multiple further
photos, until a unique mapping to 3D space can be de-
fined. This interactive process is supported and guided by
providing suggestions for potential polygon candidates in
neighboring images, as well as by giving visual feedback
on the estimated accuracy for the projection to 3D space.
This allows the user to make use of both point cloud and
image data, while relying on an optimal, flexible workflow
with minimal manual intervention.

2 Related Work

The field of urban reconstruction has gained a lot of scien-
tific attention in the last years. A complete overview is out
of scope for this paper, and we refer the interested reader
to the recent state-of-the-art report by Musialski et al. [14].
Instead, we put our focus on methods that incorporate pho-
tos in the geometric reconstruction pipeline, or that try to
simplify the 3D modeling by either reducing the interac-
tion dimensions or providing suggestions to the user.

From a user-oriented perspective, our novel system is
most closely related to systems presented by Debevec et
al. [5] or Sinha et al. [18]: These interactive tools also rely
on image-based modeling operations, and use photogram-
metric data sets to calculate geometric correspondences in
order the reconstruct 3D geometry. While operations like
snapping to edges in images or multi-view texture gener-
ation have been integrated in these tools as well, neither
of them exploits the availability of the underlying pho-
togrammetric point cloud in order to simplify the sketch-
ing progress as in our method. Furthermore, we introduce
an additional guiding indicator in the graphical user inter-
face that operates as a feedback provider to give the user an
easy-to-grasp preview on how much more modeling work
is needed (see Section 5.3).

The derivation of polygonal meshes from point clouds
has been intensively studied in recent years [11, 3, 10, 1,
16], Wang et al. [20] use additional image-based data in
their interactive tool in order to regularize the building by
proposing a scaffold-like structure. Still, especially in the
domain of urban reconstruction, the resulting 3D build-
ings differ significantly from typical models designed with
CAD tools: While human users construct building models
consisting primarily of geometric primitives with exact in-
tersections, meshed point clouds are inherently noisy and
contain holes. Additionally, the absence of hierarchical re-
lations makes operations like geometric editing or seman-
tic classification cumbersome.

To tackle these problems, Arikan et al. [2] have pro-
posed an interactive method that first identifies the basic
planar shapes in a point cloud, on which initial coarse

polygons are created. Holes between the polygons are au-
tomatically closed by an optimization step whenever pos-
sible. In unclear cases, the user can edit, fix or add poly-
gons using simple 2D operations on the corresponding
segmented plane. Unfortunately, this approach relies on
point clouds that resemble nearly the whole surface, and
especially in the case of photogrammetrically generated
data, the often-occurring large holes cannot be accurately
reconstructed. Reisner-Kollmann et al. [15] proposes us-
ing image information for filling holes in the surface in
an automatic method. In our approach, we employ the
ideas of both these approaches: planar surfaces in the point
cloud are identified and used as a sketching plane for 2D
modeling interaction — but by using the photos as addi-
tional input in the 2D domain, the sketched polygons can
additionally snap to image edges, and polygons for which
no point cloud data is available can be accurately recon-
structed.

Our novel work is therefore a combination and exten-
sion of the before-mentioned interactive modeling tools,
striving for simplicity in terms of modeling operations
(2D image-based sketching and snapping) and exploiting
structural information (planar point cloud segments, im-
age edges) from all data sources available — while helping
and guiding the user through the process and leaving all
decisions to his artistic freedom.

3 Photogrammetric Data

Rt

N 75
R i o g

2V

Figure 2: Photogrammetric Network (bottom), consisting
of a 3D point cloud and photos (top), for which their rel-
ative positions and orientations have been computed. We
refer to them as Shots in this work.

As this work focuses on interactive modeling using pho-
togrammetric data, we describe the properties and distinc-
tive characteristics of this input type: A Photogrammetric
Network consists of a 3D point cloud and images, which
are overlapping photos of an object or — like in our case —
buildings. By applying Structure from Motion (SfM) tech-
niques, the relative positions (i.e. the location and the ori-

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



entation) on which the photos were taken from, as well as
a 3D point cloud, consisting of matching image features
that have been reprojected to 3D space, can be computed
(see Figure 2). The point cloud can be further densified
using algorithms proposed by Furukawa et al. [8, 7], but
since these points have not been measured, but were cal-
culated using image features, photogrammetrically gener-
ated points may not be as dense and — more important
— not as uniformly distributed as point clouds from laser
scans, leading to more holes in the data. For example, it
is difficult to extract robust features and therefore closely
spaced 3D points from completely flat, featureless walls.
We therefore strive for compensating this missing infor-
mation by defining polygons in multiple photos, see Sec-
tion 4.1.

The oriented photos — we refer to them as Shots — in the
Photogrammetric Network are positioned around the point
cloud. By having access to intrinsic and extrinsic camera
parameters, transformations from the 2D image space to
the 3D world space and vice versa can be achieved. In the
case of our work, this is necessary for simple 2D editing
and sketching steps and their according impact on the 3D
world space, see Section 5.

Another advantage of the availability of Shots is their
use in further reconstruction steps, as for interactive line
snapping or texture generation. Furthermore, the acqui-
sition process can be done with a consumer-level photo
camera and freely available SfM-Tools, making it a cheap
and easy solution compared to other methods.

4 Definition of Polygons using Shots

The primary interaction and sketching target in our frame-
work is a Shot, selected from a photogrammetric network
as described above. Sketching directly in a Shot photo for
the purpose of creating 3D geometry has two major advan-
tages in terms of usability:

e The user immediately grasps the scene to reconstruct,
as a photo is a very close approximation of what one
perceives when looking at an object.

e The interaction is performed in a 2D environment.
This does not only make the modeling tools less com-
plex to handle — humans are usually used to sketching
or drawing on a flat sheet of paper since their early
childhood.

While defining the approximate outline of a flat polygon
in 2D space is therefore comparably easy to achieve, the
derivation of the corresponding representation in 3D space
requires additional information: The 3D plane on which
the 2D outline has to be projected from the photo is com-
pletely unknown at first, but can be calculated by taking
additional constraints into account. We therefore propose
three methods to estimate this needed information in an in-
tuitive way with the least possible user effort, and without
having to leave the 2D sketching domain.

4.1 Multi Shot Sketching

One method to obtain the 3D positions for the vertices of
a sketched polygon in 2D image space is to define it not
only in one, but in multiple photos. Since the orientation
of the Shots is known in 3D space, each pixel on the image
plane can be used to define a ray from the focal point of
the camera through the pixel position in world space. If
this is done for a polygon vertex in multiple images, the
intersection point of the corresponding rays defines its 3D
position (see Figure 1, middle). This is repeated for all ver-
tices, and the unknown plane can then be estimated using
the least-squares method.

We implemented these ray intersections using the linear
triangulation method based on homogenous direct linear
transformation (DLT) as described by Hartley and Zisser-
man [9] resulting in a least squares optimal solution. This
approach is just one possible solution to this intersection
problem. We opted for it as the authors state, that the “ho-
mogenous linear method [...] often provides acceptable re-
sults. Furthermore, it has the virtue that it generalizes eas-
ily to triangulation when more than two views of the point
are available”. We take this into account during our guided
sketching feedback, where we encourage the user to define
the polygon in more than 2 shots (see Section 5.3).

4.2 Point Cloud Supported Single Shot
Sketching

Even though the multi-view approach described above is
an algorithmically well-working solution, a human user
would prefer to minimize ones efforts and wants the sys-
tem to “understand” what one intended to do after sketch-
ing a polygon in a single Shot, and reproject it into 3D
space. This can in fact be made possible by exploiting the
point cloud data: Similar to Arikan et al. [2], we segment
the point cloud into planar segments using the RANSAC
algorithm by Schnabel et al. [17]. After an initial polygon
has been sketched, we transform the points of each seg-
ment from 3D world space into 2D image space, and test
which points of each segment lie inside the polygon. Note
that in our current implementation, we perform this test
for all segments, which could be easily optimized by per-
forming a culling step (e.g. by using the bounding boxes
of the segments).

We compute a heuristic & € [0, 1] which gives us an es-
timation of how well a polygon fits a planar segment. We
use the number of points lying inside the 2D polygon as
well as the uniformity of the distribution of these points,
i.e. whether the projected point cloud segment has “holes”
in it. The uniformity is estimated by rasterizing all points
as splats over the polygon and then determining a fill ratio
r, where 1 means fully filled and 0 not filled at all.

mr
h=""
n

where 7 is the total number of points of the segment and
m is the number of points inside the polygon.

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



Splat size g is based on the average point distance,
where d; is the distance between point i and its nearest
neighbor.

1 n
q= EZ di

i=1
If there is at least one segment that passes the (ad-
justable) acceptance threshold, we choose the one with the
highest result as the potential candidate, and inform the
user about the outcome (see Section 5.3). If the user de-
cides to make use of it, the polygon is projected onto the
plane that has been fit to the point cloud segment (see Fig-
ure 1). Otherwise, the user continues sketching the poly-
gon in further views, and the Multi-view Shot Sketching
algorithm is applied. Nevertheless, the initially found can-
didate segment can still be helpful: if the normal of the
polygon calculated using the multi-view method differs
only 10 degrees from the segment plane normal, the poly-
gon is adjusted to it accordingly.

4.3 Sketching Using the Plane of Existing
Polygons

Since it is obviously possible for a human user to assign a
semantic meaning to polygons that are being sketched, it
is often an easy task to recognize that some elements lie
on the same plane in 3D space. This is especially the case
for elements like windows, doors or balconies on a facade.
We therefore allow the user to simply define the polygon
of an existing element as the 3D sketching plane for the
next polygon, and can therefore reproject the 2D outline
to 3D space immediately.

5 Guided Polygon Creation

After providing information on the theoretical background
on the View-based Shot Sketching in the previous Section,
we describe how we integrated these concepts in interac-
tive workflows that are designed to give the user an optimal
modeling experience. All interactive concepts described in
the following Sections only guide and support the user —
despite all suggestions of our system, the assume that the
“user knows best”” what his intentions are. Every sugges-
tion and guidance step in our system can therefore also be
safely ignored by the user.

5.1 Shot View Navigation

As described above, all shot view sketching operations
are performed in the 2D photos of the Shots for reasons
of simplicity. Although the sketching takes place in the
images, it is of utter importance that the user implicitly
always knows about the current view location in the 3D
world, so that the spatial context can be used to sketch
polygons in multiple Shots and not mix them up.

During sketching, the user is presented a 2D view of the
current photo. Nevertheless, since the corresponding Shot

incorporates 3D information, we allow the opacity value to
be changed arbitrarily, so that the 3D content (e.g. already
modeled polygons or even the point cloud) can be made
visible. Furthermore, the navigation between the shots
has been designed to help to retain the information of the
current user position: Instead of changing the displayed
photo immediately, the camera starts a flying animation to
show where the user is going. We also allow the user to
leave the “Shot View” at any time and fly around in the
3D scene, and fly back to the current shot or the next shot
with a smooth transition later on. For these reasons, the
shots needs to be internally sorted according to their spa-
tial neighborhood relation and not according to the time
the photo was taken or even the file name. We therefore
decided to sort the shots with a Traveling Salesman algo-
rithm with the distance between the shot centers as weight
function, resulting in an order that humans would intu-
itively describe as the proper natural way of describing the
neighborhood relations.

5.2 Sketching and Snapping in Shot View

Once the user decides to start modeling a new polygon in a
selected Shot, the initial polygon only needs to be sketched
roughly on the photo, as we allow it to snap to near edges
in the image. For this, we use an implementation of the
Line Segment Detector described in the work of von Gioi
et al. [19] to find edges in the underlying image. The out-
line of the initially sketched polygon is compared to the
line set of the image. Two lines of these sets are matching
if they are nearly parallel and spatially close. If no match-
ing image line to a polygon edge is found, the initial edge
will be used. To conclude the snapping process, the match-
ing lines are intersected with each other, and the intersec-
tion points are the vertices of the new, snapped polygon.
Figure 3 shows the polygon snapping workflow.

Figure 3: Polygon Snapping: sketched 2D polygon on an
image (left), extracted image lines with matchings in blue
(middle), snapped polygon (right)

If the user opts for using the Multi-View Shot Model-
ing mode, the modeling workflow requires the same poly-
gon to be available in different images. Instead of having
to sketch the corresponding polygon again, the proposed
system tries to minimize the needed efforts: As soon as
the user switches to the next Shot, the initial polygon is
not only projected into the other image, but it is positioned
to “fit the same sketched object”. For example, if the poly-
gon snapped to window edges in the initial image, the pro-

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



jected polygon in the neighbor image also tries to find and
snap to the same window edges.

To achieve this, we transform the edges of the initial
polygon outline into the underlying photo and compute
normalized color histograms of them. Then the polygon
outline histograms are compared with histograms of edges
found in the target image to find matching lines. A match
is a pair of lines, one from the polygon outline and its cor-
responding edge in the target image. The best polygon-
outline image-edge pair is the basis of the polygon in the
other shot. Further adjacent edges are stepwise added to
the polygon depending on histogram matches, or approxi-
mated if no match was found.

Especially in the case of buildings, it becomes obvi-
ous why an interactive approach with minimized input that
mostly consists of deciding on proposed suggestions is im-
portant: Architectural objects often consist of extremely
similar and repetitive patterns, and an initially found win-
dow can be found multiple times on the next photo, re-
sulting in the same amount of candidates for the corre-
spondence. Since the user is able to retain a global spatial
overview more easily, the correct window can be picked
with a single click.

5.3 Visual Guidance Feedback

As stated before, we want to minimize the needed user
interaction while keeping the possibility to influence any
design decision at the user level. It is therefore important
for the user to be provided with feedback on whether the
polygon should be sketched in further views, or if enough
information on the needed 3D plane is available to com-
pute the world space position of the object.

During each polygon creation process, the user gets per-
manent feedback via our novel Visual Guidance interface
to realize this: In the user interface, a state bar appears
as soon as the initial polygon is sketched. The states can
switch between red (not enough information), yellow (the
system can suggest a 3D polygon, but it may be inaccurate
or ambiguous) and green (an accurate polygon can be pro-
vided, and no other plane candidates can interfere). See
Figure 4 for a visualization of the guidance element in the
user interface.

Concretely, we use the red state whenever an initial
polygon has been sketched, and no plane to project the 2D
outline onto is available. This is the case when no neigh-
boring 3D polygon has been selected (see Section 4.3)
and no fitting planar point cloud segment can be found
(i.e. the metric returns no value above a certain user-
definable threshold for all point cloud segments, see Sec-
tion 4.2). The yellow state is used when either two or
more potential planar point cloud segment candidates that
are of equal quality are available, or, when using Multi-
view Shot Sketching mode, the polygon has only been de-
fined in two Shots yet (which may be inaccurate, see Sec-
tion 4.1). The user can stop sketching anytime this quality
estimator is not in red state, and a 3D polygon is created —

MORE POLYGONS DONE

NEEDED

—

Figure 4: The Visual Guidance interface shows whether
enough polygons have already been sketched to compute
a 3D polygon, or if the user should continue sketching.

but has to be aware that the result may not be as accurate
as needed when he stops too early.

6 Additional Photo-based Modeling

Apart from sketching the initial polygons, we have inte-
grated further possibilities that demonstrate the combined
use of photo data, point clouds and geometry in a single
environment.

6.1 Model refinement

All ordinary 3D polygon-modeling tasks in our system can
also be performed via the Shot view. This is especially true
for existing polygons that have not been modeled in this
particular view, but can be reprojected and edited in the
corresponding photo anyway. Following the same princi-
ple, polygons snap to edges, and can be aligned according
to the image content: Model refinement through the shot
view is more intuitive and accurate for a user than, for in-
stance, fitting a polygon to the point cloud.

T

Figure 5: Left: By defining hierarchical relations, holes
and side faces are automatically extracted. Right: Interac-
tive removal of occluding objects from the texture by over-
laying the photo semi-transparently using the Shot view.

In addition to the Shot-based sketching operations de-
scribed in the previous Sections, our framework supports
regular manipulation and polygon creation known from
other 3D modeling packages. This comes handy in cases
when not the whole building has been photographed, but

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



the surface needs to be closed (even though this can-
not be seen as part of the reconstruction anymore). We
also included an optimization-based snapping approach to
close the small gaps between the polygons as proposed
by Arikan et al. [2], which moreover takes further con-
straints like parallelism or orthogonality of edges into ac-
count — an often-needed requirement for CAD-ready mod-
els. Moreover, we allow the definition of hierarchical re-
lations: This makes it easily possible to define “holes” for
windows and doors in the facades (the corresponding side
faces are added automatically), like in Figure 35, left.

6.2 Texture Brushing

The Shots can furthermore be used to generate textures
for the created polygons by reprojecting the photos onto
the 3D plane. We employed the technique proposed by
Musialski et al. [13], where the texture is a composition
of the photos, and each pixel gets colored according to the
image of the best fitting shot. While the initial source shot
of each pixel is initially selected automatically based on
angle and distance, arbitrary parts of the texture can be
“repainted” with the content of a user-selected shot photo
in order to remove occluders or artifacts. Figure 6 shows
textures with different coloring according to shots.

=N

EE@QE@!@Q

Figure 6: Top left: The initial texture containing occlud-
ers. Bottom Left: The associated Shots, visualized using
a false color mask. Top right: The cleaned texture after
interactive brushing. Bottom right: The correspondingly
modified mask.

We extended the original method, in which the user
could brush a polygon only directly in 3D view, to be also
used via the Shot view, in which the transparency can be
adjusted interactively. This way, the user simultaneously
has access to the current state of the textured polygon in
the 3D world, and the 2D Shot photo. In the Shot view
brushing mode, the brush paints over the texture with the
content of the shot image the user is actually looking at,
so that the user can easily find the proper image part for
a specific texture position (see Figure 5, right). Switching
between Shots and leaving the Shot view is possible at any
time as described in Section 5.1.

7 Implementation

Our novel modeling and reconstruction framework has
mainly been implemented using an internal rendering
framework based on the .NET framework and OpenGL.
The Visual Guidance feedback element has been realized
using a web-based overlay that was created using HTMLS5
and the D3.js toolkit [4]. The interactive texture brush-
ing method makes use of a Poisson solver implemented in
OpenCL. For the polygon snapping, we were given access
to the original implementation of Arikan et al. [2].

The tool currently supports photogrammetric data sets
generated with either the PMVS/CMVS toolkit [6] or with
the commercially available software Agisoft Photoscan
[12]. During the import process, the Shot neighborhood
relations as described in Section 5.1 are computed, and
the image edges for snapping are extracted in preprocess-
ing steps.

We believe that our proposed workflows and interac-
tion methods can technically be integrated into existing
3D modeling packages, but it has to be carefully evalu-
ated whether the interactions described in this paper con-
flict with the standards established there.

8 Results

We have evaluated our novel modeling framework by try-
ing to reconstruct several buildings from photogrammetric
data sets. All operations can be performed completely in-
teractive once the data set is imported, and the real-time
frame rates allow fluent work on a consumer-level com-
puter.

As can be seen in Figure 7, the targeted goal of creat-
ing low-polygonal, textured, CAD-ready 3D buildings in
just a few minutes could be reached: The modeling times
for the buildings lie between five and fifteen minutes — in-
cluding the generation of textures for the polygons. It is
important to notice that especially the side parts of the
buildings, where no complete point cloud was available
due to the limited access for the photographer to the area,
could be accurately reconstructed using our image-based
approach. The front facades, where the point cloud is usu-
ally quite dense, could be successfully modeled with the
single Shot method described in Section 4.2. Once a sin-
gle window of a certain type was modeled, all the others
on the same facade could be created using the same plane
and the edge-based snapping feature within seconds.

8.1 Limitations

Even though we have shown that using both photos and
point clouds from photogrammetric data sets in an interac-
tive workflow makes it possible to reconstruct more areas
accurately, our approach still suffers from the fact that ob-
jects that are hidden, occluded or only visible in a single

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



0 O
[T

O O

Figure 7: Three textured 3D building models generated with our approach. In the left column, the photogrammetric point
cloud is visualized, followed by the geometric reconstruction including hierarchical definitions in the middle column. In
the right column, the final model with textures generated from multiple photos and using interactive occluder removal are
shown. While parts that are not depicted in the point cloud could be reconstructed using the photos, that the backsides
of the houses were modeled freely, as they were not accessible for the photographer. Modeling time including texture
generation: Top row 5 minutes, seconds row 15 minutes, third row 10 minutes, fourth row 20 min.

photo require manual, inaccurate modeling steps. Further-
more, we are (similar to the methods proposed by Arikan
et al. [2] and Sinha et al. [18]) limited to the reconstruction
of planar surfaces. Even though curved surfaces can be ap-
proximated using multiple polygons, the handling of such
primitives is more challenging than it is for planar shapes.

9 Conclusion & Future Work

We have demonstrated how to combine interactive tech-
niques from both image-based and point cloud-based
methods to reconstruct CAD-ready 3D models of build-
ings within a few minutes. 3D planes, on which sketched
2D polygons are reprojected, can not only be computed
from multiple views, but also from planar segments de-
tected in the corresponding point cloud. Image-based
snapping features and suggestions further improve the
sketching workflow.

Our novel method is a natural extension of these related
techniques, and does not interfere with their concepts, but
improves them. By introducing an intuitive Visual Guid-
ance Indicator, users can take shortcuts during the image-
based modeling steps, while being aware of the quality im-
pact this has.

As this project is ongoing work, we have to especially
evaluate and fine-tune user-oriented interaction methods in
the future. Not only will a decent user study be performed
and more data sets be used, but we will also investigate if
we can use learning algorithms to replace currently user-
defined parameters and thresholds, as they may vary de-
pending on input data. As we already managed to sim-
plify and minimize the interactions to a level that allows
reconstruction of a building with just a few mouse clicks,
we will evaluate if these concepts can be used on a touch-
based interface as well, opening the door for the use on
mobile devices.

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



Acknowledgements

We wish to express our thanks to Thomas Ortner and Ste-
fan Maierhofer from the VRVis Research Center for their
valuable feedback. This work was supported by the Aus-
trian Research Promotion Agency (FFG) through the FIT-
IT project Replicate, project no. 835948. The compe-
tence center VRVis is funded by BMVIT, BMWFJ, and
City of Vienna (ZIT) within the scope of COMET Com-
petence Centers for Excellent Technologies. The program
COMET is managed by FFG.

References

[1]

[4]

[7]

Pierre Alliez, David Cohen-Steiner, Yiying Tong,
and Mathieu Desbrun. Voronoi-based variational re-
construction of unoriented point sets. In Proceed-
ings of the fifth Eurographics symposium on Geome-
try processing, pages 39—48, Aire-la-Ville, Switzer-
land, Switzerland, 2007. Eurographics Association.

Murat Arikan, Michael Schwirzler, Simon Flory,
Michael Wimmer, and Stefan Maierhofer. O-snap:
Optimization-based snapping for modeling architec-
ture. ACM Transactions on Graphics, 32:6:1-6:15,
January 2013.

Jean-Daniel Boissonnat and Steve Oudot. Provably
good sampling and meshing of surfaces. Graph.
Models, 67:405-451, September 2005.

Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D? data-driven documents. Visualization
and Computer Graphics, IEEE Transactions on,
17(12):2301-2309, 2011.

Paul E. Debevec, Camillo J. Taylor, and Jitendra Ma-
lik. Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based ap-
proach. SIGGRAPH, pages 11-20, 1996.

Yasutaka Furukawa. Clustering views for multi-view
stereo (CMVS). http://www.di.ens.fr/cmvs/. Ac-
cessed: 2016-02-29.

Yasutaka Furukawa, Brian Curless, Steven M. Seitz,
Richard Szeliski, and Google Inc. R.: Towards
internet-scale multiview stereo. In In: Proceedings
of IEEE CVPR, 2010.

Yasutaka Furukawa and Jean Ponce. Accurate,
dense, and robust multiview stereopsis. IEEE Trans.
Pattern Anal. Mach. Intell., 32(8):1362-1376, Au-
gust 2010.

R. I. Hartley and A. Zisserman. Multiple View Ge-
ometry in Computer Vision, chapter 12.2, page 312f.
Cambridge University Press, second edition, 2004.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. Poisson surface reconstruction. In Proceed-
ings of the 4th Eurographics symposium on geome-
try processing, SGP 06, pages 61-70, Aire-la-Ville,
Switzerland, 2006. Eurographics Association.

Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke,
and Hans-Peter Seidel. Feature sensitive surface ex-
traction from volume data. In Proceedings of the
28th annual conference on Computer graphics and
interactive techniques, SIGGRAPH °01, pages 57—
66, New York, NY, USA, 2001. ACM.

Agisoft LLC. Photoscan. http://www.agisoft.com/.
Accessed: 2016-02-29.

Przemyslaw Musialski, Christian Luksch, Michael
Schwirzler, Matthias Buchetics, Stefan Maierhofer,
and Werner Purgathofer. Interactive multi-view
facade image editing. In VMV 2010, pages 131-138,
November 2010.

Przemyslaw Musialski, Peter Wonka, Daniel G.
Aliaga, Michael Wimmer, Luc van Gool, and Werner
Purgathofer. A survey of urban reconstruction. Com-
puter Graphics Forum, 32(6):146—177, September
2013.

Irene Reisner-Kollmann, Christian Luksch, and
Michael Schwirzler. Reconstructing buildings as
textured low poly meshes from point clouds and im-
ages. In Nick Avis and Sylvain Lefebvre, editors, Eu-
rographics 2011 - Short Papers, pages 17-20, April
2011.

Nader Salman, Mariette Yvinec, and Quentin
Merigot. Feature preserving mesh generation from
3D point clouds. Computer Graphics Forum,
29(5):1623-1632, 2010.

Ruwen Schnabel, Roland Wahl, and Reinhard Klein.
Efficient ransac for point-cloud shape detection.
Computer Graphics Forum, 26(2):214-226, June
2007.

Sudipta N. Sinha, Drew Steedly, Richard Szeliski,
Maneesh Agrawala, and Marc Pollefeys. Interactive
3d architectural modeling from unordered photo col-
lections. ACM Trans. Graph., 27(5):159, 2008.

Rafael Grompone von Gioi, Jrmie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast
line segment detector with a false detection control.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, 32(4):722-732, 2010.

Jinglu Wang, Tian Fang, Qingkun Su, Siyu Zhu,
Jingbo Liu, Shengnan Cai, Chiew-Lan Tai, and Long
Quan. Image-based building regularization using
structural linear features. Transactions on Visualiza-
tion and Computer Graphics, 1(99):1, 2015.

Proceedings of CESCG 2016: The 20" Central European Seminar on Computer Graphics (non-peer-reviewed)



	Introduction
	Related Work
	Photogrammetric Data
	Definition of Polygons using Shots
	Multi Shot Sketching
	Point Cloud Supported Single Shot Sketching
	Sketching Using the Plane of Existing Polygons

	Guided Polygon Creation
	Shot View Navigation
	Sketching and Snapping in Shot View
	Visual Guidance Feedback

	Additional Photo-based Modeling
	Model refinement
	Texture Brushing

	Implementation
	Results
	Limitations

	Conclusion & Future Work

